| 1. | A new type of fixed point theorems about contraction mapping 一类新型的压缩映象的不动点定理 |
| 2. | On fixed point theorems for - contraction mapping in topological spaces 压缩映象的不动点定理 |
| 3. | We proved the existence and the uniqueness of the solution by means of the contraction mapping theory 用压缩映像原理证明了解的存在性与唯一性。 |
| 4. | But , if we generalize to , only using the contraction mapping principle can not guarantee the existence and uniqueness of almost periodic solution 但是,若将推广到,仅仅用压缩映象原理是无法保证上述系统存在唯一概周期解的。 |
| 5. | By using the contraction mapping principle , the boundary value problems for a second order functional difference equation are investigated . existence and uniqueness results are obtained 利用压缩映照定理,研究了一个二阶泛函差分方程边值问题,得到存在和唯一性定理 |
| 6. | Using the principle of contraction mapping , [ 14 , 15 ] gruffly showed us the fact that when the initial value is sufficiently small the solution may globally exist . but it ' s a pity that we do n ' t know exactly how " small " [ 14 , 15 ]用压缩映象原理粗略说明在初值充分小的条件下解的整体存在性,但遗憾的是未能明确充分小到什么程度。 |
| 7. | In this paper , the author uses the fixed point index of 1 - set contraction mapping to study the problem of their eigenvectors and eigenvalues and gets some new eignevalues and eigenvectors existrence theorems 摘要该文进一步用1 -集压缩映象的不动点指数,研究更广泛的1 -集压缩映象的固有值和固有元问题,得到若干新的固有值和固有元存在性定理。 |
| 8. | [ 1 - 4 ] considered the almost periodic perturbation systems of the form , , by using the contraction mapping principle , some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution and bounded solution of these systems 文献[ 1 - 4 ]考虑了扰动系统, ,利用压缩映象原理,得到了上述系统存在唯一概周期解和有界解的一些充分条件。 |
| 9. | To the first equation , the banach contraction mapping theorem is used to show the local existence of the solutions , we use potintial well method to prove the global existence and the decay rate of the solutions , to the blow - up of the solution we use the energy method 本文主要采用bananch压缩映射原理来获得解的局部存在性;采用势井方法来获得解的整体存在性和衰减估计;对解的爆破结论的证明主要采用能量方法;对解的能量衰减估计主要采用能量扰动方法。 |
| 10. | The thesis is composed of two chapters . in chapter 1 , we consider the almost periodic perturbation systems of the form by using the roughness theory of exponential dichotomies and the contraction mapping principle , some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution and bounded solution of the above systems . our results generalize those ones of [ 3 , 4 , 7 , 8 , 9 ] 第一章考虑了两类概周期扰动系统, ,利用指数型二分性的粗糙度理论和压缩映象原理,得到了上述系统存在唯一概周期解和有界解的一些充分条件,推广了[ 3 , 4 , 7 , 8 , 9 ]的结果。 |